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ABSTRACT 
This paper shows the importance of the science of complexity to explain processes and structures of technological 
activities clearing various aspects of the complexity of technology.  In a first part of the paper are described some 
fundamental aspects of the science of complexity and its relation with technology starting from the difference among 
simple, complicated and complex systems, and a brief history of the formation of the science of complexity. We discuss 
after the question of measure of the complexity, the concepts and the studied phenomena that makes this science 
transdisciplinary, and the various types of complex systems: chaotic, auto-organized, adaptive and networks. After the 
paper describes some complex processes of interest for technology that are the autocatalytic and the phase transition 
processes, and those based on cyclic systems. It follows a presentation of models of complex systems of interest for 
technology, such as the small world network model, the NK model, the fitness landscape and the complex adaptive 
systems. In a second part of the paper we discuss the contribution of the science of complexity to the understanding of 
the technology innovation process in its phases of generation of innovative ideas, development of technologies and use 
of technologies. The paper is terminated discussing the advantages deriving by the complexity of technology due to the 
spontaneous development of valid organizational structures for innovation, and concerning the great number of 
potential new technologies that may emerge from the enormous chaotic field of technology knowledge. That makes 
technology a potential solution for economic or environmental problems, and that a sustainable technologic growth is 
possible by technological developments and right use of technologies. 
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1   INTRODUCTION 
 
   The study of technology dynamics (Bonomi 2020) and the process of technology innovation 
(Bonomi 2021) has shown the importance of the science of complexity in supplying general 
concepts, structures, processes and models in explaining technological activities. It is then of 
interest to discuss the complexity of technology through this science and to have a general view of 
technology dynamics seen from the point of view of the science of complexity. This science has 
been developed in particular by the Santa Fe Institute, founded in 1986 by George Cowan, former 
scientist at Los Alamos National Laboratories and first President of the Institute, and Murray Gell-
Mann, Nobel Prize in physics, and having also many supporters in particular Kenneth Arrow, Nobel 
Prize in economy (Waldrop 1992). In fact, this science has a key role in treating the description of 
technology seen as an enormous set of physical, chemical and biological phenomena that produce 
the effects that may be exploited for various human purposes. In this case the science of complexity 
supplies the concept of technological operation, able to generalize the sets of physical phenomena 
composing a technology, leading to consider a technology as a time-oriented structure of 
technological operations. This application of the science of complexity is at the base of a general 
model of technology from which it is possible to derive the various processes and structures of a 
technological activity independently of its purposes, such as economic purposes, and able to explain 
some fundamental aspects of technology (Bonomi 2020). The science of complexity is 
transdisciplinary, and that means it defines concepts, describes structures and processes, and 
develops models that are valid for many disciplines. In this way it gives a support in understanding 
many phenomena of various nature including those observed in technology dynamics. An example 
of an important transdisciplinary approach is the model of technology, derived from a previous 
biological model of genes interactions (Kauffman 1993), and obtained by substituting genes with 
technological operations (Auerswald et al. 2000). 
 
It is not the objective and possibilities of this paper to discuss the development of further 
applications of the science of complexity to the study of technology, and its scope is limited to 
description of concepts, processes and models of the science of complexity applied to processes and 
structures of technology innovation. The Santa Fe Institute, has carried out studies on complexity of 
technology between the end of 80’ and the beginning of 90’, in particular with the contribution of 
two of its scholars: Brian Arthur and Stuart Kaufmann (Waldrop 1992), leading to the development 
of the general model of technology cited previously. After these works, the Santa Fe Institute did 
not continued studies of application of science of complexity to technology, and a recent review 
edited by this institute on the research activity between 1984 and 2019 (Krakauer 2019a) reports 
many fields of study of this science, but it does not include the field of technology and makes only 
an indirect reference considering the case of emergent engineering that may be reframed by the 
science of the complexity (Krakauer 2019b). Actually, by describing the relations existing between 
technology and the science of complexity, this article has also the aim to renew the interest of this 
science in the field of technology and its innovation for a better understanding of this complex 
activity. 
 
The study of complexity, implies the abandonment of the description of systems in term of 
existence of a direct relation between cause and effects, and the adoption of a new not linear way of 
thinking. Furthermore, it is necessary to abandon the easy, but not suitable, view of existence of a 
possible forecasting of evolution of the complex systems, substituted by a multiplicity of scenarios 
and accepting the associated uncertainness. The study of problems in this manner means to be able 
to integrate different types of information, recognize the hidden connections and possible 
evolutions, determine the factors of instability and possible useful variations. 
 



After this introductory section in a second section we define the difference among simple, 
complicated and complex systems. In a third section we give a brief historical description of the 
formation of the science of complexity. In a fourth section we discuss the measure of the 
complexity. In a fifth section we define the various concepts and phenomena, and in a sixth section 
the various types of complex systems. In a seventh section we describe the various processes and in 
the eight section the models developed by this science interesting technology. In a ninth section we 
discuss the applications of the science of complexity to the technology innovation process and in 
the tenth section we conclude citing applications and discussing the advantages of technology due 
to its complexity. 
 
 
2   DEFINITION OF THE VARIOUS TYPES OF SYSTEMS 
 
   From the point of view of the complexity, it is possible to define three general types of systems: 
the simple systems, the complicated systems and the complex systems. 
 
Simple systems 
They are of simple nature and ready understandable in its functioning, for example a pendulum, and 
a perturbation has typically a linear behavior in which we have generally an effect that is 
proportional to the magnitude of the perturbation. 
 
Complicated systems 
These systems, not readily understandable, are governed by established laws making possible 
forecasting or to have solutions based on analytic-deductive procedures. An example is the clock in 
which it is not possible to visualize immediately the functioning but it is possible to give its full 
description and the laws for its functioning. As in the case of simple systems, the complicated ones 
have typically a linear behavior in which a perturbation has generally an effect that is proportional 
to its magnitude. 
 
Complex systems 
These systems are characterized by the fact that it is not possible to establish deterministic laws for 
their behavior and are then unpredictable. Their behavior is not linear and in certain case they may 
be subject of great perturbations but with little effects or, on the contrary, have very great effects 
caused by little perturbations. These systems are of various types and are the object of study of the 
science of complexity. 
 
 
3   BRIEF HISTORY OF THE SCIENCE OF COMPLEXITY 
 
   Historically the birth of the science of complexity may be attributed to the great French 
mathematician and physicist Henry Poincaré that observed analytically for the first time the limits 
of forecasting of behavior of complex systems. He reported in his book Science and Method, 
written in 1903, the possible existence of systems in which small differences in the initial 
conditions may generate enormous differences in the final resulting phenomena, making impossible 
a forecasting and then resulting in a casual behavior. The observations of Poincaré cannot be 
confirmed before the development of computers allowing the modelling of natural phenomena with 
sufficient calculation power and accuracy. That happened in 1961 following the works of Edward 
Lorenz, an American meteorologist, studying a global meteorological model on a computer, and 
finding that very small difference in the initial meteorological conditions were able to generate, 
after a certain time, very different meteorological situations. The history of this discovery has been 
reported in a book about chaos (Gleick 1987) and described as the result of a repetitive running of a 



meteorological model on the computer, casually using as input the printed initial data limited to 
three decimals. Actually, the computer used six decimals but not entirely printed to save space. 
Lorentz thought that this difference would not have effects on forecasting, but in fact it was not the 
case and gave after a certain time a very different meteorological situation, a behavior called later 
the butterfly effect. Following this discovery on behavior of chaotic systems there was an increased 
interest in the study of these systems and also other complex systems leading to the formation of the 
science of complexity in which the Santa Fe Institute, cited previously, has taken a great role 
(Waldrop 1992). 
 
 
4   MEASURE OF THE COMPLEXITY 
 
   In the study of the complexity it would be of interest to have the possibility to measure the 
complexity of the various systems. While it is possible to measure the disorder of a system through 
the concept of entropy, and also to describe the various configurations of ordered systems, it is not 
possible to define a general measure of the complexity of a system but only to elaborate some 
measures on certain types of complex systems. This argument has been presented in a simplified 
manner in a book on complexity written by Murray Gell-Mann, one of the founders of the Santa Fe 
Institute cited previously (Gell-Man 1994). In informatics, for example, it is possible to define the 
computational complexity as the minimum time necessary to a computer to solve a certain class of 
problems independently of their dimension, however this measure depends also on the choice of the 
computer. Another aspect of the complexity of a system is the fact it depends also on the scale with 
which are considered its elements. For example, in a biological ecosystem is different whether we 
consider only plants and animals or we take account also of insects and microbiologic organisms. In 
technology, its modelling will be different following the detail we describe the structure of 
technological operations considering or not also the various sub-operations. It is then evident that 
the complexity varies following the scale of the elements considered for a system. Actually, any 
real complex system may be in principle modelled on a computer and described as a binary string. 
The complexity of this string may reflect, in a certain way, the complexity of the system. That will 
depend on the used model for the computer, that represents necessarily a simplification of the 
system, in carrying out an acceptable simulation in the considered scale of details. Now, comparing 
two strings, it may appear that one string contains regularities while the other may appear irregular. 
Actually, it is possible to define in informatics the regularity of a string using a parameter called 
algorithmic contents of information (ACI) or algorithmic randomness defined as the shortest length 
of time of a program able to print the string and terminate the program on a computer with a 
memory enough big for the treatment of the string. In fact, in presence of regularities in a string, the 
program will be able to compress the description of the string allowing a more rapid printing while, 
with a completely irregular string, the program will take time to print each of all elements of the 
string. However, the ACI cannot be measured accurately, in fact the Chaitin’s theorem has shown 
that, given a string apparently disordered, it does not exist any algorithm able to identify all the 
possible regularities existing in the string and then compressing the program in order to measure 
accurately the ACI. This theorem has important implications on our concept of disorder, in fact, a 
string that appears completely disordered, may contain in the reality some regularities that however 
would be too complex to be identified, then the definition of a system as disordered may be simply 
the result of our ignorance on the system. Nevertheless, the ACI may give some indications about 
the complexity of a system. That may be explained for example considering three types of text of 
the same length represented by strings: a first text composed only by the same letter, a second text 
composed by a disordered list of letters, and a third text composed by a chapter of a book. The 
value of ACI will be very low for the first text, very high for the second disordered text and 
intermediate for the third text that in fact appearing more complex than the ordered text, and 
containing grammatical or syntactic regularities. In other words, the ACI does not represent a 



measure of the complexity but a property of a system that, starting from an ordered situation, 
increases the ACI in generating complexity reaching a point that corresponds to a transition from 
order to what it appears as a disordered system. This fact is important and it is observed in many 
real cases in which the formation of complex structures occur at the edge of chaos, for example, in 
the change of phases of water, the ordered molecular structure of ice may melt and form the 
complex molecular structure of liquid water and then a transition to the chaotic system of vapor 
molecules. In technology such transition is observed in generation of a new technology, considered 
as a form of complex system, and obtained by a formation of an order constituted by the 
combination of previous technologies existing in the chaotic system of the technological knowledge 
in the generation of new technologies, in fact the formation of order at the edge of chaos (Bonomi 
2020). 
 
 
5   COMPLEXITY CONCEPTS AND PHENOMENA 
 
   The science of complexity assumes that seemingly disparate phenomena, both natural or social, 
can be understood using a common conceptual view, and that it is possible to elaborate metaphors, 
analogies and finally develop models for these phenomena (Gray, Macready 2019). Used concepts 
and described phenomena in the science of complexity are for example: emergence, adaptation., 
evolvability, robustness, co-evolution, learning, self-organization, networking, phase transition and 
feedback loop. These concepts and phenomena are associated to various processes existing in a 
complex system and then in technology and are described as follows: 
 
Emergence is a concept corresponding to a process forming an ordered system from the chaos. This 
concept was used for example in the case of biology to explain self-organization and selection 
processes in biological evolution (Kauffman 1993), and in technology to explain the generation 
process of innovative ideas from available knowledge (Bonomi 2020). 
 
Adaptation is a concept corresponding to a process of modification of a system under the effect of 
externalities in order to maintain its fitness. In technology it corresponds to modification of 
technological parameters or technology structure to conserve the efficiency of technology under the 
effects of externalities.  
 
Evolvability is a characteristic process of a system that continuously evolve with time modifying its 
structure under the effect of internal or external factors. This process occurs either in biological or 
technological evolutions and, in this last case, it is characterized also by the formation of 
organizational structures for technological innovations such as the R&D system, the startup-venture 
capital (SVC) system and the industrial platform system (Bonomi 2020). 
 
Robustness is a phenomenon represented in natural systems by the resistance to disruption because 
of various externalities that act on the system. In artificial or technological engineered systems 
robustness represents the resistance to disruption although under the effect of externalities not 
considered in the design of the system. 
 
Co-evolution is an evolutionary concept corresponding to a process observed for example in 
biology and concerning the genetic evolution of the prey-predator system. If a predator modifies its 
genetics improving efficiency in hunting a prey, it is observed also the formation of a genetic 
modification in the prey to compensate the increased efficiency of the predators. Such phenomenon 
observed in biological evolution has been called Red Queen Regime (Van Valen 1973), and it is 
observed also in technological competition among firms of an industrial district or sector in which 
the competitivity obtained by an incremental innovation of a firm is readily eliminated by 



innovations obtained by the other firms. That leads to a continuous development of technological 
innovations of incremental type but without important economic growth or emerging of dominating 
firms (Bonomi 2020). 
 
Learning is a general concept covering a phenomenon existing either in natural or artificial systems 
in which specific behaviours necessary to maintain the fitness of a system, in respect to various 
externalities, are memorised and made available when necessary. A typical learning activity in 
technology is observed for example in facing externality effects and consequent acquisition of 
knowhow during the use of a technology, and also in learning by doing (LbyD) activity leading to 
improvements or even new incremental technologies (Bonomi 2020). 
 
Self-organization is a phenomenon linked to emergence in which chaotic elements become self-
organized forming an ordered system and observed, as cited previously, in biology (Kauffman 
1993). In technology this phenomenon is represented by the formation of an innovative idea for a 
new technology based on a self-organization of pre-existent technologies through a combinatory 
process exploiting or not exploiting new or never used phenomena discovered by science. The 
formation of organizational structures for innovation may be also considered as the result of a self-
organization of fluxes of knowledge and capitals (Bonomi 2020). 
 
Networking is a typical behaviour of elements of a system that enter in connection forming a 
network. In the science of complexity networks are studied by specific models taking account of a 
phenomenon existing in real networks and called small world effect. That is based on the 
observation that are necessary in real networks only a very small number of passages to link two 
distant elements even in a great real network. The small world effect is largely exploited by rapid 
communications in internet. The formation of networks of relations is typical of either biological or 
technological ecosystems. The networking of actors interested in technology innovation and the 
existence of the small world effect is important in the diffusion of knowledge useful for generation 
of innovative ideas for new technologies. Interesting examples of networking and small world effect 
are reported in technology dynamics study in the examples of use of the general knowledge 
generated by R&D activities (Bonomi 2020).  
 
Phase transition is a phenomenon consisting in a drastic change observed in a system because of 
evolution of certain parameters of the system. A phase transition is not a time dependent 
phenomenon but dependent on changes in the structure and processes of a system. Many cases of 
phase transitions are known in physics concerning for example melting/solidification, 
vaporization/condensation processes and also transition from magnetic/not magnetic behavior as a 
function of temperature. Phase transitions in technology are also observed in the evolution of 
territories from technology stagnation or decline to technology development because of an increase 
of R&D activities above a critical threshold of magnitude (Bonomi 2020). 
 
Feedback loop is a phenomenon in which the caused effects of a system influence the factors that 
are the cause of the observed effects. It is formed in this way a feedback loop that determines the 
behaviour of the system. In technology feedback loops are observed in the generation of innovative 
ideas from R&D activities or during the use of technologies that are both in fact originated by 
previous innovative ideas. Important feedback loops exist in technology dynamics in the 
intertwining process between R&D activity and scientific research (Bonomi 2020), and in the 
relation between science and technology (Bonomi 2021). In the first case scientific results are 
useful for R&D activities, but R&D may trigger sometime scientific research to obtain results 
useful to verify possibilities of new applications. In the second case technology is needed to make 
new scientific discoveries, but science supplies new discovered phenomena exploitable for new 
technologies. Another important feedback loop exists in industrial platforms that supply 



improvements and new technologies to peer consumers that return knowledge of use of 
technologies useful to the platform for improvements and new technologies. (Bonomi 2020). These 
three feedback loops in the field of science and technology are presented in Fig.1. 
 
 
6   TYPES OF COMPLEX SYSTEMS 
  
   It is possible to consider four types of complex systems: the chaotic system, the auto-organized 
critical system, the complex adaptive system and the network system that are described as follows: 
 
6.1 Chaotic system 
   This is a disordered system that presents neither casual phenomena statistically correlated nor 
adaptative behaviors. However, in many cases, observing its chaotic evolution with time, it may 
show some regularities. In fact, representing this system with its variables in the so-called space of 
the phases, it may be observed an approach with time of the system, often thorough a repetitive 
behavior, to specific values of variables constituting what it is called an attractor basin. In another 
case a chaotic system reaches a dead point ending its evolution, and it is then called a terminated 
system, or it is not observed any arrest and the system is called progressive. It may be observed that 
the fact that attractors or termination behaviors are not observed in a chaotic system, it is not a 
demonstration that the system does not have these behaviors because they may appear after a time 
greater than that used for the observations. All these phenomena have been noted in the study of 
many chaotic systems (Gleick 1987), such as the study of the chaotic meteorological system made 
by Lorentz cited previously. The knowledge associated to technology, and including the enormous 
number of technologies that are in use or have been used, may be considered as a chaotic system 
from which new technologies emerge through combinatory processes. 
  
6.2 Auto-organized critical systems 
   This type of systems with a chaotic behavior, presents however casual phenomena that are 
statistically correlated. That has been observed first in 1956 by Charles Richer, an American 
seismologist, studying statistically the occurring of earthquakes and their energy. Richter observed 
that the frequency and the intensity of earthquakes, in a determined vast area for a length of time 
enough high, were correlated with an inverse proportional relation between the logarithm of the 
frequency and the logarithm of the intensity of earthquakes. This type of correlation has been 
observed in many other casual phenomena occurring with time, and in 1987 Per Bak, a Danish 
physicist, gave a demonstration of this law in an experiment using a heap of sand of critical 
dimension producing avalanches by addition of further sand. It was found in this case that 
dimensions of avalanches followed the same logarithmic law of Richter for earthquakes. He found 
also that their distribution has a fractal dimension being the same for the various scales of sand 
heaps. He called these systems critical auto-organized systems (Bak, Tang, Wiesenfeld 1987), It 
has been also observed that in these systems the appearing of phenomena of extraordinary great 
dimensions, when considering a sufficient long lapse of time, occurs within irregular intervals of 
time, and they may appear coupled in a short period especially after a long period in which they 
have not appeared. The existence of critical auto-organized systems following the Richter law has 
been observed also in economic field considering the variation of cotton price in stock markets for 
which it exists a record of prices since a long time. In this case it has been observed also a fractal 
type distribution that appears the same considering many various periods of time of different length 
(Gleick 1987). In technology the auto-organized critical systems are represented by environments in 
which the generation of grouped new technologies may appear suddenly in small or great number 
within a short time in specific fields during the technological evolution. The same may occur for 
appearing with of externalities with small or great effects on the use of a technology modifying 
sensibly for example its economy. 



 
6.3 Complex adaptive systems 
   The complex adaptive systems (CAS) are the most important among the various complex systems 
and find many applications also in technology dynamics. This complex system is characterized by a 
structure composed by a set of elements that interacting makes the emergence of a certain behavior 
(Holland 2019) or, in alternative, a system that, on the base of its behavior in respect to its 
environment, carries out a specific treatment of the received information (Gell-Man 1994). These 
two different views of CAS, have been the object of two different models of this system described 
later in the section on modelling of complex systems. 
 
6.4 Network systems 
   Network systems are the result of a networking activity producing networks with ordered or casual 
connections. From the mathematical point of view, a network may be ordered, for example the linking 
of atoms in a crystal, or casual in which the elements of the network are linked in a disordered way. 
Real networks are mostly a mixture of both presenting, as cited previously, the so-called small world 
effect consisting in the existence of only a small number of connections to join even two very far 
nodes of the network (Newman 1999). 
 
 
7   PROCESSES IN THE COMPLEX SYSTEMS 
 
   The science of complexity has studied a certain number of processes that may operate in complex 
systems and two of particular interest for technology are: the autocatalytic processes linked to phase 
transitions and processes based on cycles and hypercycles.  
 
7.1 Autocatalysis and phase transition 
   The process of autocatalysis occurring in a complex system may be explained considering the 
relation existing between the number the elements of a system and the number of their interactions. 
An autocatalytic process may occur when there is a sufficient high number of positive interactions 
among the elements reaching and overturning a certain threshold that is high enough to provoke an 
autocatalytic process of growth. The overturning of the threshold represents in fact a phase transition 
of the system from a subcritical stagnant situation to an autocatalytic development. This situation is 
represented in general by the curve reported in Fig. 2 separating a subcritical area from the 
autocatalytic area. In this figure the curve represents also the phase transition from a subcritical to an 
autocatalytic situation of the complex system. In biology it has been proposed that the formation of 
the first living cells occurred when there was formed an enough high number of complex interactive 
networks among molecules with a biologic potential, generating auto-sustained protometabolic 
networks, and forming what it may be considered a phase transition from groups of simply interacting 
molecules to living organisms (Kauffman 1993). The process of phase transition has been observed 
also in technological activities and for example shown by studies on R&D. In fact, developing a 
mathematical simulation model of this activity, it has been shown the formation of a phase transition 
between a situation of technology stagnation or decline to a situation of technology development. 
That has been done studying the starting of a variable number of initial R&D projects in a territory 
vs. the efficiency of the territory in exploiting the available knowledge, and showing that an 
autocatalytic technology development is formed when there is an enough high number of initial R&D 
projects started in the territory and sufficient efficiency in exploiting of available knowledge (Bonomi 
2020).  
 
7.2 Cycles and hypercycles 
   Cycles in complex systems are phenomena characterized by a sequence of events, the last one 
forming anew the initial status quo event or generating a development or decline and arrest of the 



cycle. In a certain way cycles may be considered an evolution of feedback loops in which are 
introduced factors producing a connected sequence of effects in the loop. Often a cycle is started by 
an initial triggering factor that put it in activity. This activity may reach an equilibrium (status quo) 
or a continuous growth or, on the contrary, a decline until its arrest as previously noted. The growth 
of the activity may be the consequence of an autocatalytic effect produced in the cycle, on the 
contrary, the decline may be produced if the trigger magnitude is not enough effective to sustain the 
activity of the cycle causing in this way its arrest. A schematic view of the cycle with the possible 
evolutions is presented in Fig. 3.  In technology dynamics there are various important types of 
cycles concerning knowledge in the R&D and startups activity, and the financial cycle of the SVC 
system (Bonomi 2020). Hypercycles are in fact cycles in which the elements of the cycle sequence 
are themselves cycles. They have been observed in many natural phenomena for example in 
biochemistry (Eigen, Winkler 1975) but not until now in technological activities. 
 
 
8   MODELS OF COMPLEX SYSTEMS 
 
   The science of complexity has developed various types of models to explain the various behaviors 
of the complex systems. Such models, for the transdisciplinary characteristic of this science, may find 
applications in many fields of science and technology. The models interesting technology dynamics 
concern: the small world network model, the NK model, the fitness landscapes and the complex 
adaptive system (CAS) models 
 
8.1 Small world network model 
   As previously discussed, real networks may be considered composed by a mixture of ordered and 
casual connections among their elements and presenting the previously explained small world effect. 
It is then of interest to develop a mathematical model simulating the real networks presenting this 
effect. One of these models is for example the Watts and Strogatz model in which in a special ordered 
network are introduced some random connections between nodes of the ordered part and presenting 
by running the model a small world effect (Watts, Strogatz 1998). The small world effect has for 
example an important role in diffusion of knowledge concerning technology or innovative idea in 
networks of researchers involved in a same field of R&D. 
 
8.2 NK model 
   The NK model is constituted by a Boolean network of N points each connected with other points 
with a K number of connections. The activated or disactivated state of a point will depend on the state 
of the K points with which it is connected through logic relations (AND, OR, NOT, etc.) chosen for 
the connection. A simple example of Boolean network of model NK may be formed by 3 points (N 
= 3) each with 2 connections (K = 2) as reported in Fig. 4. The state of point 1 of the figure (activated 
or disactivated) will depend on the points 2 and 3 and by the chosen Boolean relation. For example, 
if the relation is AND, the point 1 will be activated only when both points 2 and 3 are activated. In 
this way it is possible to build up quite complex networks that may assume various sets of activated 
or disactivated states evolving with time in a variable way, or, in certain cases, forming more or less 
ample zones that remain activated or disactivated or rather oscillating with time in two states. The 
NK model has been originally developed in physics to explain the magnetic behavior of spin-glasses. 
In technology the NK model has been employed by Stuart Kauffmann in studying LbyD. In fact, 
Kauffman, starting from his application of the NK model to analyze asexual biological genetic 
evolution (Kauffman 1993), extended this approach to analyze the dynamics of manufacturing costs 
in LbyD activities by substituting genes with technological operations. The dynamics of 
manufacturing costs in LbyD activities through the NK model was presented first in a working paper 
published in 1998 by the Santa Fe Institute and then published in 2000 on the Journal of Economic 
Dynamics and Control (Auerswald et al. 2000). The idea existing in this work to see technology as a 



set of operations, deriving concepts such as the technological space and the technological landscape, 
was, as previously noted, of great importance for the development of a general model of technology 
introducing also the concept of space of technologies (Bonomi 2020). Another application of the NK 
model in technology has been also developed by Koen Frenken in 2001, but considering technology 
as an artefact composed by a set of components and not as a process composed by a set of operations 
as in the Kauffman’s model (Frenken 2001). 
 
8.3 Fitness Landscape 
   The fitness landscape may be derived from the NK model and represents a powerful tool in 
explaining the evolution of complex systems. The fitness landscape is used in particular to visualize 
relations between the various configurations of a system and their corresponding fitness. Considering 
that each configuration of a system may be described considering all the elements of the system, each 
with its various parameters with their various values or choices, it is possible to represent all the 
configurations in a multidimensional discrete space in which each point corresponds to a specific 
configuration. If we associate to each point or configuration the scalar value of its fitness, we obtain 
a fitness landscape. It is possible to explain the construction of a very simple fitness landscape starting 
from two points of the NK model that may assume each two possible states corresponding to 1 or 0. 
In this case the various configurations of the system composed by the two points may be represented 
in the space of configurations by four points corresponding to the four possible strings. If we associate 
the scalar value of fitness for each of the four points, we obtain the fitness landscape of the system 
represented in Fig. 5. This tool has found applications especially in theoretical biology in the study 
of genotypes. In technology dynamics a fitness landscape may be used to represents the efficiency of 
a technology as a function of values or choices of the various parameters of each operation 
constituting the structure of a technology in what it is called a technological landscape. The case 
reported in Fig. 5 corresponds in fact to a simple technology composed by two operations each with 
only one parameter that may assume only the values 0 or 1. The indicated space of configuration 
corresponds to the technological space, and the fitness landscape to the technological landscape of 
this simple technology (Auerswald et al. 2000). 
  
8.4 Complex adaptive system models 
   Adaptation phenomena are studied in the science of complexity in the so-called complex adaptive 
systems (CAS) previously presented and that may be modelled finding applications in many fields 
including technology. A CAS may be described, as previously explained, on the base of its structure 
as a set of elements that interacting makes the emergence of a certain behavior. In alternative a CAS 
may be described on the base of its behavior in respect to its environment as a system that carry out 
a specific treatment of the received information. The first model, has been developed by John 
Holland (Holland 2019), and it is composed by a set of agents that have the freedom to act in a not 
totally fully predictable way on the base of own schemas, and their actions are interconnected in 
such a way that an action of an agent influence the actions of the other agents. The behavior of the 
system emerges from the interactions of the various agents under the influence of the environment 
in which the CAS is embedded. The agents may be individuals, firms, families, etc. following the 
nature of the system. In the Fig. 6 we have reported a simplified schematic representation of such 
system model. The second type of CAS model, described by Murray Gell-Mann (Gell-Man 1994), 
is composed by a system that receives and treats the information acting in consequence and it is 
presented schematically in Fig. 7. The process is cyclic and starts considering an initial existence of 
anterior data concerning behavior, effects, etc. that the system identifies in term of regularities and 
forming, through compression and simplification, a description of the forecasting behavior, and 
putting in this way the system in action. The operation of the system in the real world is influenced 
by an input of external factors that make a change of the behavior with the corresponding 
consequences. That has also a selective effect on the schematic structure followed by a 
memorization of data and experience that influence the future action of the system. This second 



model is of particular interest in technology as it describes the process of adaptation of a technology 
under the influence of externalities through improvements or generation of innovations during its 
use, as for example in LbyD activities. 
 
 
9   SCIENCE OF COMPLEXITY AND TECHNOLOGY INNOVATION 
 
   In the previous sections we have seen how the various concepts, processes, structures and models 
of the science of complexity are in relation with various aspects of technology dynamics. It is of 
interest to see also the relation between technology and the science of complexity from the point of 
view of the innovation process. Therefore, considering that the concepts, structures, processes and 
models are in relation with the main phases of the innovation process i.e. the generation of 
innovative ideas, the technological development including feasibility, development and 
industrialization steps, and the use of technology. 
 
9.1 Generation of innovative ideas 
   The process of generation of innovative ideas is based on the available knowledge concerning an 
enormous quantity of technologies, that are in relation and interacting among them. This system 
may be considered a chaotic system, that may have also the behaviour of an auto-organized system 
in certain case of generation of small or great waves of new ideas for new technologies. It is then 
characterized by the phenomenon of emergence of an idea from available knowledge, and 
consisting in a self-organization of pre-existent technologies in imagining a possible new 
technology exploiting or not exploiting new or never used phenomena discovered by science. This 
process of generation is favoured also by the existence of networks of people exchanging 
knowledge boosted by the small world effect.  The factor controlling the emergence of innovative 
ideas is represented by the efficiency in exploiting the available knowledge generating more or less 
R&D projects or startups proposals. This efficiency, as we have seen previously, is also one of the 
parameters that determines the phase transition from a technological decline to an autocatalytic 
development in territorial innovation systems. Finally, the formation of the innovative idea may be 
seen also as formation of an order at the edge of chaos as discussed about the measure of 
complexity and the meaning and properties of the algorithmic contents of information (ACI) 
parameter. 
 
9.2 Development of the technology 
   This phase of development is characterized by the presence of R&D and startups activities and for 
this phase are available a model of R&D based on a knowledge cycle, and a model of the SVC 
system following the VC financial cycle. In Fig. 8 we have reported as example the knowledge 
cycle of R&D projects or startups in technology dynamics. This phase of the innovation process is 
also concerned by the auto-organization of structures for innovation such the R&D system, the SVC 
system and the industrial platform system. Furthermore, it is possible the formation of a phase 
transition from technological decline to development in a territory through autocatalytic processes 
as a function of the amount of technology innovation activity and efficiency of exploitation of 
available knowledge. This phenomenon may be highlighted by running the R&D model cited 
previously (Bonomi 2020). 
 
9.3 Use of the technology 
   During the use of technology there are numerous concepts and processes derived from the science 
of complexity that may characterize this activity such as: processes of adaptation, degree of 
robustness vs. external factors, evolvability with formation of new incremental innovations and 
learning through the formation of a knowhow by LbyD. An important model of the science of 
complexity explaining the activities during the use of a technology is a specific type of fitness 



landscape called technological landscape, that presents the efficiency of a technology as a function 
of its various operational conditions. A technology is normally operated in the optimal conditions 
represented in the landscape. Externalities may modify the form of the landscape and new optimal 
conditions of operation shall be found through an exploration of the new form of the landscape. 
Sometimes the effects of externalities cannot be eliminated by a search of new conditions in the 
landscape and it is necessary a technology innovation, generally of incremental type, associated to a 
new technological landscape. An important model of the science of complexity interesting the use 
of a technology is the complex adaptive system (CAS) following the Gell-Mann’s view as a system 
treating information and acting in consequence. It may explain the way with which the use of a 
technology faces the influence of the various externalities. A simplified view of the Gell-Mann’s 
model applied to the use of technology is reported in Fig. 9. In this model the process starts with 
existence of optimal conditions of operation of a technology associated with a predictive system on 
the behaviour of the technology constituted by the technological landscape and existing knowhow. 
Under the effects of an external factor the used optimal conditions may be disrupted and it is 
necessary an action to modify the operative conditions of the technology considering the landscape 
and accumulation of new knowhow. That occurs normally by modifying the operative conditions 
and possibly by introducing an incremental innovation. The new operative conditions close the CAS 
cycle with a possible modification of the predictive system. The interpretation of the improvements 
of a technology through the CAS model may explain also because a knowhow of a technology 
cannot be transferred completely by simply oral explanations or in the written form of manuals. In 
fact, a technology cannot be considered a simple deterministic system for which it is possible to 
give a complete description of its operative conditions. That because it is operated in a chaotic 
environment undergoing to unpredictable externality effects that must be considered in order to 
maintain its efficiency, and practically that cannot be completely included in manuals or oral 
descriptions, but treated as described in the CAS model. This situation well explains the necessity 
of LbyD in the improvement or transfer of a technology 
 
9.4 Feedback loops in technology innovations 
   There is a process described by the science of complexity, the feedback loop, that in fact involve 
all the three stages of the innovation process. In the process of technology innovation there are two 
phases involved in the generation of knowledge, the first one concerns the R&D and startup 
activity, and it is constituted by general knowledge formed in successful or abandoned projects or 
startups, the second one is represented by knowledge generated during the use of a technology that 
may lead to incremental innovations in response to externalities or LbyD, although rarely forming 
radical innovations. Both sources may feed knowledge, especially in the case of R&D activities, to 
the stage of generation of innovative ideas that enables the starting of the following development 
phase.  
 
The feedback loops completed with indications of concepts, processes, structures and models 
derived from the science of complexity, and involved in the various phases of the innovation 
process, are indicated in Fig. 10. 
 
 
10   THE COMPLEXITY ADVANTAGE OF TECHNOLOGY 
 
   The interpretation of technological activities through concepts, structures, processes and models 
of the science of complexity has allowed to clear some fundamental aspects of technology that may 
have applications in technology management and policies for technology innovation. These aspects 
have been used in technology dynamics to describe the innovation process, to suggest new 
statistical studies for research and innovations and actions for the promotion of innovation activities 
(Bonomi 2020). Furthermore, the study of a general model of technology innovation has given also 



interesting considerations about the relation between science and technology, between technology 
and economic growth, between technology and the environment and also the importance of 
intermediate scientific and technical education in the process of generation of new technologies 
(Bonomi 2021). Actually, there is an important aspect of processes and structures studied by 
technology dynamics, and linked to the science of complexity, consisting in the fact that they have 
been originated and evolved historically mostly as spontaneous phenomena, and not resulting by a 
design developed in business schools or by a forecasting in the academic field, in fact both active 
essentially only in their study after knowing their existence. The spontaneous evolution of 
technological structures and processes may be considered as the result of a Darwinian selection of 
various attempts to satisfy the various technological needs of the society. The derived technological 
innovation system appears consequently robust, in the sense this concept is defined by the science 
of complexity, assuring the continuity of activities for example of the various organizational 
structures for innovation. Actually, the fact that technologies are the result from an innovation 
system formed mostly spontaneously, submitted to a Darwinian selection, based on efficiency of its 
processes and organizational structures for the innovation, constitutes one of the important 
advantages of technology resulting from its complexity, characterized by the emerging of new 
technologies from the chaotic system of technological knowledge, an emergence occurring through 
the self-organization of structures for innovation such as the R&D, SVC and platform systems. 
Furthermore, the neutrality of technology vs. its purposes of use, derived from its nature based on 
physical phenomena, and not defined in term of relations with the economic or social system, shows 
that environmental problems attributed to certain technologies are in fact ascribable to the purposes 
of their use and not to the basic nature of technology, and the same technology may be useful or 
dangerous depending on purpose and conditions of its use (Bonomi 2020). On the other side the 
enormous chaotic availability of technologies, and the progress in scientific discoveries, makes 
possible an enormous number of potential new technologies through the combinatory process of 
their formation. All that allows to conclude that technology shall not be considered a source of 
problems, but a potential solution for economic or environmental problems, and that a sustainable 
technologic growth is possible by a right development and use of technologies. 
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12   FIGURES 
 
 
Fig. 1. Feedback loops in technology dynamics 
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Fig. 2. Autocatalysis and phase transition 
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Fig. 3.  Example of a complex system cycle 
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Fig.4. Schematic view of NK model with N = 3 and K = 2 

 

 

 

 

 

 

Fig. 5. Fitness landscape of two elements of a string each with two possible figures: 0 and 1 
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Fig. 6. Holland’s model of a complex adaptive system 
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Fig. 7. Gell-Mann’s model of a complex adaptive system 
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Fig. 8. Knowledge cycle in R&D projects and startups 
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Fig.9. Technology use as complex adaptive system 
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Fig. 10. Science of complexity and the technological innovation process 
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