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Abstract

Although NP-Complete problems are the most difficult decisional prob-
lems, it’s possible to discover in them polynomial (or easy) observables.
We study the Graph Partitioning Problem showing that it’s possible to
recognize in it two correlated polynomial observables. The particular be-
haviour of one of them with respect to the connectivity of the graph
suggests the presence of a phase transition in partitionability.

Keywords: Time Complexity; NP-Complete; Redgraph; Redbonds.

1 Introduction

Decisional problems are essentially divided into two great classes: P or easy

problems, which can be solved in polynomial time by deterministic algorithms,

and NP or difficult problems whose worst instances can’t be solved in polyno-

mial time, unless you have a non-deterministic computer. Of course P ⊆ NP but

the question if P 6= NP is still open. Among the NP problems, the so called NP-

Complete are particularly important because they are the most difficult in NP;

in fact all NP problems can be converted into a NP-Complete problem in poly-

nomial time. If just one NP-Complete problem could be shown to be in P, that

would imply P=NP. Till now, no polynomial algorithm for any NP-Complete

problem is known; however, recently, a polynomial observable has been found

in the K-SAT problem[1], which is NP-Complete[2], suggesting that also other

NP-Complete problems can display computationally easy observables.

Another relevant feature of NP-Complete problems (but not only of them)

was found about twenty years ago: they exhibit phase transitions. Important
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results were obtained for K-SAT[3, 4], Number Partitioning[5, 6] and Graph

Partitioning[7].

In this work the Graph Partitioning Problem (GPP) was applied to random

graphs; two correlated P observables were found in it: the number of redbonds[8,

9] and the number of redgraphs; moreover, the number of redgraphs could be

put in relation to the phase transition of the problem.

In the next section a review of GPP is sketched, while in section 3 we describe

our polynomial algorithm and discuss the numerical results.

2 The Graph Partitioning Problem

A graph G(V, E) is assigned by giving a set V of N points called vertices, and a

set E ⊂ V × V of m edges which specify which pairs of vertices are adjacent in

G(V, E): each edge connects two distinct vertices. The graph is a random graph

if each edge exists with some probability p. The mean connectivity α is defined

as the average number of edges per vertex. Having N vertices and m edges, the

total number of possible edges is N(N−1)
2 so p = 2m

N(N−1) and α is simply 2m

N
.

In general, given a graph G(V, E), the Graph Partitioning Problem consists in

finding the partition of set V into two disjoint and equally sized subsets V1 and

V2 such that the number K of edges having one vertex in V1 and the other in

V2 (bonds) is minimized; if we find a partition with no bonds at all, we will say

that the graph is partitionable. In decisional form one can simply ask if, given

a graph G(V, E) and a number K, there is a partition such that the number of

bonds is lower than or equal to K.

We know that a large (giant) cluster appears in random graphs at α = 1, the

so called percolation threshold, but the giant cluster’s size becomes N/2 only at

αc = 2 ln 2 ≈ 1.386[10, 11] and here GPP shows a phase transition[7]: when α <

αc random graphs are partitionable, but they become suddenly unpartitionable

for α > αc and the number of bonds grows up with α (for fixed values of N)[7].

It’s reasonable to suppose that partitions with only one bond, the so called

redbond partition, lie only in a small region around αc.

A random graph which has at least one redbond will be called redgraph and the

mean number of redbonds per redgraphs at fixed values of α and N represents

the entropy (that is the number of solutions) of the GPP with K = 1.

Why redbond? This name originated from an electronics problem which is a

practical application of GPP[12]: the design of an efficient component made

of N circuits equally divided over two chips and connected by m wires. One

would like to minimize the time required by informations to propagate through

the entire machinery, and it is known that wires connecting circuits on different

chips (the bonds) slow down remarkably the propagation: so one has to look
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for a circuits’ placement which minimizes the number of bonds between the two

chips. On the other hand, another effect might come into play; if there were just

one link, the whole information would go through it overloading the bond: in

a little while the entire component would break down because the bond burns,

after turning red.

It’s worthwhile to note at the end of this section that, like in electronics, infinite

range percolation models can be used to cope with problems in a huge variety

of different subjects, for example: the origin of life[13, 14], fluctuations in the

stock market[15] and the breakdown of the internet[16, 17]

3 The method and the results.

In order to find a redbond, after having broken the entire random graph into

clusters (connected subgraphs) using the Hoshen-Kopelman algorithm[18], the

first step is to find the giant cluster and to calculate its size, namely the number

of its vertices. If the giant cluster’s size is lower than or equal to N/2, the

istance is partitionable and it has no sense to look for a redbond; otherwise, if

the size is greater than N/2, the graph could be a redgraph. As a second step,

remove one edge from the giant cluster: if this edge is a redbond, the stripped

giant cluster separates into two subclusters, the size of the biggest one being

lower than or equal to N/2. Putting the just obtained biggest cluster in V1 and

the other subclusters in V2, and completing the partition by inserting into V1

and V2 all other clusters of the original graph, one obtains a partition with a

redbond.

Therefore, to calculate the number of redbonds, this procedure is applied re-

cursively to each edge of the giant cluster: one checks whether the removal of

each one leads to a biggest subcluster with size lower than or equal to N/2.

Using again the Hoshen-Kopelman algorithm, the breaking of the giant cluster

requires at most O(N2) steps; since the number of the giant cluster’s edges is

obviously O(N2), the complexity time of the algorithm is O(N4), so that the

number of redbonds is a polynomial observable of GPP.

If we have a statistical ensemble of l random graphs and want to know how

many graphs are red, we have only to repeat the above process l times. There-

fore, regarding the number of redgraphs as an observable of the problem, we see

that it can be calculated in l N4 steps, so that it is also polynomial.

Actually these observables would be better called probable redbonds and proba-

ble redgraphs, because, in searching for true redbonds, also the structure of the

non-giant clusters should be taken into account in detail. However, as N in-

creases, the probability to meet a real redbond with our algorithm grows up. We

performed simulations over random graphs with N = 1000, 5000, 10000, 15000,
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20000, and 25000, in order to calculate the number of redgraphs. The range

of α depended on N and varied, for example, from 1.3 to 1.55 for N = 1000

and from 1.36 to 1.42 for N = 25000. For each couple of values of N and α

the program crunched 1000 samples. The outcome is that redgraphs do exist,

as expected, only in a small region around αc, while the probability to find a

redgraph shows a peak close to αc, which becomes smaller and more narrow as

N increases. This behaviour might be interpreted as the signal of the known

phase transition, in analogy to what happens in some physical systems (think

of the magnetic susceptivity χ versus temperature in a ferromagnetic system).

(Fig.1).

In order to estimate the entropy, we limited ourselves only to the cases

N = 1000 and N = 5000, taking care to average our results over 10000 samples,

in order to reduce the statistical errors. We verified that entropy doesn’t vanish

abruptly at αc, as problem’s solutions are found above this point. For N = 1000

entropy goes to zero slowly whereas the fall for N = 5000 is much faster. This

behaviour is a clear finite-size effect, quite similar to the one found in the K-SAT

problem[4](Fig.2).

4 Conclusion

In this paper we have studied the GPP applied to random graphs and we have

shown that two tightly correlated P observables are present in this NP-Complete

Problem: the number of redbonds and the number of redgraphs. We have also

characterized in a new way the phase transition in partitionability of the GPP

through the peaked behaviour of the number of redgraphs near αc.
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Figure 1: Number of redgraphs in terms of connectivity. The measures are made
over 1000 samples.
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Figure 2: Mean number of redbonds (entropy) in terms of connectivity. The
average is made over 10000 samples.
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